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ABSTRACT 

Density functional theory (DFT) is used in the cohesive energy calculations of beryllium (Be), titanium (Ti), zinc 
(Zn) and zirconium (Zr). DFT based Fritz Haber Institute-ab initio molecular simulation (FHI-aims) computer code 
has several input parameters in which some of the variables were optimized. The cohesive energies of Be, Ti, Zn 
and Zr were calculated within Perdew Wang local density approximations (LDA) of DFT; and the results obtained 
from the calculations were approximately 4.28eV, 6.47eV, 1.74eV, and 7.46eV respectively. These results obtained 
are in reasonable agreement with experimental measurements of 3.32eV, 4.85eV, 1.35eV and 6.25eV for Be, Ti, Zn 
and Zr respectively within reasonable percentage errors. 
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1 INTRODUCTION 

Density functional theory (DFT) is one of the most widely used methods for calculations of the structure of atoms, 
molecules, crystals, surfaces, and their interactions [1]. It is one of the most popular and robust theoretical 
approaches currently available for solving the cohesive energy, electronic structures of solids and their surfaces [2]. 

DFT being one of the most popular and quantum-mechanical approaches to many-body systems are applied to 
computations of ground-state properties of molecules and the band structure of solids in physics. Cohesive energy 
calculations vis-à-vis the first principle total energy calculations using DFT is considered satisfactory in the physics 
of condensed matter systems, material science and physical chemistry.  

Metals like Be, Ti, Zn, and Zr crystallizes in the hexagonal close packed structure. In this computational research 
work, these selected lattices were investigated using DFT based FHI-aims code as a tool to calculate the cohesive 
energies of Be, Ti, Zn and Zr. 

The FHI-aims code uses DFT as a main production technique to determine electronic and structural properties of 
molecular or solid condensed matter in its ground state within the local and semi-local approximations [3, 18]. 

The choice of an alkaline earth metal (Be) and the three other transition metals Ti, Zn and Zr is because of their 
importance in material science and technology. 

Because of its stiffness, light weight and dimensional stability over a wide temperature range, Be metal is used for 
light weight structural components in defense and aerospace industries in high-speed aircraft, guided missiles, space 
craft, and satellites. Also, Be is a p-type dopant in III-V compound semiconductors. It is widely used in materials 
such as GaAs, AlGaAs, InGaAs and InAlAs grown by molecular beam epitaxy (MBE). 
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Because of its high tensile strength to density ratio, Ti is alloyed with aluminium, zirconium, nickel, vanadium and 
other elements to manufacture a variety of components including critical structural parts, fire walls, landing gear, 
exhaust ducts (helicopters), and hydraulic systems. Ti is durable and has become more popular for designer jewelry 
(particular, titanium rings). Ti is alloyed with gold to have roughly the same hardness but more durability. On the 
other hand, Zn is most commonly used as an anti-corrosion agent, and galvanization (coating of iron and steel); it is 
also used as an anode material for batteries. Materials fabricated from Zr metal and ZrO2 are used in space vehicles 
where resistance to heat is needed. High temperature parts such as combustors, blades, and vanes of jets engines and 
stationary gas turbines are increasingly been protected by thin ceramic layer, usually composed of a mixture of 
zirconium and yttria. 

Our interest on structure and binding imply that the cohesive energy Ecoh of a system is very important. It is useful 
for studying binding strength in crystal structures and can help to gain information about structural preferences of 
solids. 

Cohesive energy is the energy that must be supplied to a solid or crystal to separate its constituents into free atoms at 
rest and at infinite separation with the same electronic configuration [4, 5]. Cohesive energy is one of the parameters 
used to understand the nature of chemical bonding and several important parameters can be predicted using it. Its 
magnitude tells us the stability and chemical reactivity of solids. Eventually, it is the quantity which determines the 
structure of solids, because different possible structures would have different cohesive energies [6]. 
Many powerful methods for solving schrodinger’s equation have been developed during decades of struggling with 
the many-body problem. These methods are Nearly-Free-Electron Approximation, Cellular Method, Augumented 
Plane-Wave method, Scattering Matrix Method, Pseudopotential Method; and other methods. These methods are 
time-consuming, cumbersome and poses problems to researchers in this field. Hence, DFT as a powerful tool 
replaces the many-body electronic wave function used in the method mentioned above with the electron density as 
the basis quantity [19]. 
In calculating basic properties of solids like cohesive energy, lattice constants, band structures and density of state, 
we use DFT as the most popular and successful quantum-mechanical approaches to matter [7]. 
In this research, the cohesive energies of Be, Ti, Zn and Zr were computed based on DFT package FHI-aims code in 
the range between 4.28eV and 7.46eV which is in reasonable agreement with experimental data in the range 
between 3.32eV and 6.25eV. 
 
2.   THEORETICAL FRAMEWORK 
Density functional theory (DFT) is a quantum mechanical technique used in physics, chemistry and material science 
to investigate the structural and electronic properties of many body systems. DFT is a ground-state theory in which 
the emphasis is on the charge density as the relevant physical quantity. DFT has proved to be highly successful in 
describing structural and electronic properties in a vast class of materials, ranging from atoms and molecules to 
simple crystals to complex extended systems (including glasses and liquids). Furthermore DFT is computationally 
very simple. For these reasons DFT has become a common tool in first-principles calculations aimed at describing – 
or even predicting – properties of molecular and condensed matter systems. [8, 9]. 
Traditional methods in electronic structure theory, in particular Hatree-Fock theory and its descendants are based on 
the complicated many-electron wave function. The main objective of DFT is to replace the many-body electronic 
wave function with the electronic density as the basis quantity. Whereas many-body wave function is dependent on 
3N variables, three special variables for each of the N electrons, the density is only a function of three variables and 
is a simpler quantity to deal with both conceptually and practically [18].  
 
2.1 THE HOHENBERG-KOHN THEOREM 
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The Hohenberg-Kohn (H-K) theorem asserts that the electron density of any system determines all ground-state 
properties of the system. In this case the total ground state energy of a many-electron system is a functional of the 
density. 
 
Consider a system of N interacting (spinless) electrons under an external potential V(r) (usually the coulomb 
potential of the nuclei). If the system has a non-degenerate ground state, it is obvious that there is only one ground 
state charge density that corresponds to a given V(r). In 1964, Hohenberg and Kohn demonstrated the opposite, far 
less obvious result: there is only one external potential V(r) that yields a given ground-state charge density n(r). The 
demonstration is very simple and involves the disproof of a proposition by showing that it leads to absurdity. 
 
For many-electron Hamiltonian H=T+U+V, with ground state wave function, ψ. T is the kinetic energy, U is the 
electron-electron interaction. V is the external potential. The charge density n(r) as defined by Hohenberg-Kohn is 

  ( ) ( )∫= drdrrrrrNrn NN ...2321 ,...,,,
2

ψ        (2.1) 

 

Now considering a differential Hamiltonian VUTH '''' ++= . V  and V '  do not differ simply by a constant: 

≠−VV '  constant with the ground state wave function ψ '  . 

Assuming that the ground state charge densities are the same: [ ] [ ]VnVn ''= . The following inequality holds [8, 18]: 

ψψψψψψ '''''''' HHHHE −+=<     (2.2) 

 ψψ '' '' VUTVUTEE −−−+++<       (2.3) 

That is  

 ( ){ }∫ −+< drVVrnEE ''          (2.4) 
Conversely,  

 ( ){ }drVVrnEE '' −∫−<         (2.5) 
Adding (2.4) and (2.5) gives 

 EEEE +<+ ''  Contradiction!       (2.6) 

The inequality is strict because ψ and ψ ' are different, being eigen state of different Hamiltonians. By reversing the 
primed and unprimed quantities, one obtains an absurd result. This demonstrates that no two potentials can have the 
same density. The first Hohenberg-Kohn (H-K) theorem that has a straight forward consequence is that of the 
ground state energy E is also uniquely determined by the ground-state charge density. In mathematical terms, E is a 
functional E [n(r)] of n(r). This is why this field is known as density functional theory [10]. We can write that: 

( )[ ] )( )( ( ) ( )[ ] ( ) ( )drrVrnrnFVUTVUTrnE ∫+=++=++= ψψψψψψ          (2.7) 

Where F [n(r)] is a universal functional of the charged density n(r) (and not of V(r)) also known as the H-K 
functional [11]. For this functional a variation principle holds: the ground state energy is minimized by the ground 
state charge density; this is the H-K second theorem. In this way, DFT exactly reduces the N-body problem to the 
determination of a 3-dimentional function n(r) which minimizes a functional E [n(r)]. Unfortunately, this is of little 
use as F [(n)] is not known [8, 18]. 
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2.2 THE KOHN-SHAM (KS) EQUATIONS 

In 1965, Walter Kohn and Lu Sham proposed an educated guess that later yielded results in which they reformulated 
the problem in a more familiar form and opened the way to practical application of DFT. The system of interacting 
electrons is mapped onto a ficticious system of non-interacting electrons having the same ground state charge 
density n(r). For a system of non- interacting electrons the ground-state charge density is represented as a sum over 
one-electron orbitals (the KS orbitals) ψi [8, 12]: 

( ) ( )ri irn
2

2∑= ψ         (2.8) 

Where i runs from 1 to N/2. If we assume double occupancy of all states, and the Kohn-Sham orbitals are the 
solution to the Schrödinger equation: 

   ( ) ( ) ( )rrirVm iiKS ψψ ∈=









+∇− 2

2

2
                    (2.9)  

In closed systems, suppose there is an even number of electrons, so that they all can be paired up and the external 
potential V(r) is independent of spin. Spin-up and spin-down contribute equally to the total density: 

( ) ( )rnnrn 2
1=↓=↑ 
















        (2.10) 

Therefore, we only need Ne/2 Kohn-Sham orbitals, to each of which we assign an occupation number of f=2. These 
orbitals satisfy the orthogonality condition [11]:  

 ( ) δψψ ijji drr =∫ ∗             (2.11) 

Again the density can also be written as:  

( ) ( )∑
=

=
2

1

2
Ne

i
rirn ψ         (2.12) 

And the kinetic energy as 

( ) ( )rrT s i

Ne

i
i ψψ ∇−= ∑

=

2
2
1 2

1
                (2.13) 

The existence of a unique potential VKS in equation (2.9) having n(r) as its ground state charge density is a 
consequence of the H-K theorem, which holds irrespective of the form of electron-electron interaction, U. The 
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problem is now to determine VKS(r) for a given n(r). To solve this problem it is convenient to rewrite the energy 
functionals as: 

( )[ ] ( )[ ] ( )[ ] ( )∫+++= drrVrnrnErnErnTE xcH )(              (2.14) 

The first term is the kinetic energy of non-interacting electrons. The second term called the Hatree energy contains 
the electrostatic interactions between clouds of charges. The third, called the exchange-correlation energy, contains 
all the remaining terms. The logic behind such procedures is to subtract out easily computable terms which accounts 
for a large fraction of the total energy. The only term for which no explicit form can be given is Exc. 
Utilizing the H-K theorem, we minimize the total energy with respect to the orbitals in order to obtain the orbitals 
that give rise to the ground state energy. While performing the minimization, we prefer to minimize with respect to 

( )riψ∗  and ( )riψ . One can prove that both yield the same result. 

Just like regular differentiation, we can employ chain rule for the functional derivatives. This of course works for all 
the terms except for kinetic energy. Kinetic energy may be differentiated directly with respect to the orbital. We thus 
have: 
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Finally, 
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Where the first, second and third terms in the large brackets gives the KS potential: 
( ) V xcVrVV ks H ++=                      (2.17) 

Where V H  is introduced as the Hatree potential, and the exchange-correlation potential,V xc . 

Equation (2.16) is a system of equations, which when solved simultaneously represents the many system in terms of 
single-particle orbitals. 
So far, the entire field of DFT rest on two-fundamental mathematical theorems proved by kohn and Hohenberg and   
the derivation of a set of equations by KS in the mid-1960’s [10]. 

 

3 METHODOLOGY 

The main production method is DFT to compute the total energy and derived quantities of molecules and solids of 
condensed matter in its electronic ground state [3]. 

To calculate the cohesive energies, we first compute the ground state total energies of Be, Ti, Zn and Ze for single 
free atom and their bulk. The energies are then converted to the cohesive energies using the equation:

 





 −−=

−
−= atom

bulkatombulk
coh E

N
E

N
NEEE

       (3.1) 
Calculations were carried out using FHI-aims code upgrade 6 (released on 17th July, 2011; version 071711_6). It 
works on any Linux based operating system. Computations can only be carried out after building an executable 
binary file. FHI-aims package is distributed in a source code form and requires: a working Linux based operating 
system (ubuntu 11.10 in this case), a working FORTRAN 95(or later) compiler. In this case we use x86 type 
computer and therefore intel’s ifort (specifically composerxe 2011.6.233) was installed for this work, and also a 
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compiler version of  lapack library, and a library providing optimized basic linear algebra subroutines (BLAS). 
Standard libraries such as intel’s mkl or IBM’s essl provide both lapack and BLAS support. Intel’s composerxe 
2011.6.233 comes with mkl. 
FHI-aims require two input files:  Control.in:- which contains all run time-specific information and Geometry.in:- 
which contains information directly related to the atomic structure for a given calculation. The two input files must 
be placed in the same directory where FHI-aims binary file is invoked at the terminal. 
The FHI-aims input files are constructed and production run are made to give results in the output files. 
  
4. RESULTS AND DISCUSSION 
The output files at the end of each production run has results that were used to generate tables of values which were 
in turn used to plot graphs of total energies against number of iterations in order to obtain optimized parameters for 
HCP (Be, Ti, Zn and Zr) lattices within LDA. The optimized parameters were then used to obtain the cohesive 
energies of the HCP lattices. 
Below are results obtained for the calculations of cohesive energies and their discussion:  
 

 

Fig.1. Binding curve of total energy against no. of iterations for pw-lda Be atom 

 

Fig.2. Binding curve of total energy against no. of iterations for pw-lda Be bulk 

Be is stable with only four valence electrons; the atom of Be exist in stable compounds forming bonds with less than 
eight electrons. Since Be is known to be the only stable light metal with a relatively high melting point, Fig.1 and 
fig.2 show that the total energy is stable  and convergence begins from the 2nd iteration through the last iteration for 
both Be atom and Be bulk. However, Be atom converges faster with less numbers of iteration compared to Be bulk. 
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The cohesive energy obtained for HCP beryllium was calculated to be approximately 4.28eV. This result is in 
reasonable agreement as compared to experimental value of 3.32eV [13]. Other results for cohesive energy of  
beryllium are: 3.86eV [14] and 3.60eV [14]; a more accurate value using his calculated lattice parameters, and 
4.00eV [15].  

    

 

Fig.3. Binding curve of total energy against no. of iterations for pw-lda Ti atom 

 

Fig.4. Binding curve of total energy against no. of iterations for pw-lda Ti bulk 

Fig.3 and fig.4 show a significant rise in the total energy from the first iteration to the second iteration when the total 
energy becomes stable and converges as number of iterations increases throughout the rest of the iterations for the 
binding curves of both Ti atom and Ti bulk. Ti atom has a partially filled d-orbital which makes Ti atom less stable 
having fewer number of iteration with higher energy compared to Ti bulk with lower energy. 

The calculated value of the cohesive energy of titanium is approximately 6.47eV while that of experiment is 4.85eV 
[13]. The result in this work is consistent with LDA of 6.29eV in the study of P.H.T. Philipsen et al [17]. 
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Fig.5. Binding curve of total energy against no. of iterations for pw-lda Zn atom 

 

Fig.6. Binding curve of total energy against no. of iterations for pw-lda Zn bulk 

The total energy in the fig.5 and fig.6 rises from 1st iteration to the 2nd , then from the 2nd to the 3rd before stability is 
reached as seen in both binding curves. Again, Zn atom converges with less iteration at the 4th iteration while Zn 
bulk is more stable and converges through to the 11th iteration with even more computational time. The stability seen 
in both cases is due to the valence filled d- and s- orbitals of Zinc metal. 

The cohesive energy of Zn was calculated to be 1.74eV which is also in reasonable agreement in comparison with 
experimental value of 1.35eV [13]; and also an improvement on other LDA result of 1.91eV [17]. 
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Fig.7. Binding curve of total energy against no. of iterations for pw-lda Zr atom 

 

Fig.8. Binding curve of total energy against no. of iterations for pw-lda Zr bulk 

Fig.7 begins fixed iteration at 5th iteration through the last iteration while fig.8 begins fixed iteration at 2nd iteration 
through the last iteration. The total energy in fig.7 drops and shows slight instability along the cycles before 
convergence which may be due to the partially filled d-orbital of Zr. On the other hand, the total energy of Zr bulk in 
fig.8 shows a sharp rise from the first iteration to the 2nd iteration after which the iteration becomes fixed 
throughout the entire cycles. 

The calculated value of the cohesive energy of zirconium is approximately 7.46eV while that of experiment is 
6.25eV [13]. Both results are in reasonable agreement. 

5 CONCLUSIONS 

The total energies of the HCP lattices were calculated with grids of 12x12x12 for all elements; a setting which gives 
a good compromise of computational times and physical accuracy within LDA of the FHI-aims code. The cohesive 
energies of HCP Be, Ti, Zn and Zr were calculated with the values overestimated within LDA; which is commonly 
observed findings [16]. The overbinding of the LDA appears to be related to a not sufficiently repulsive exchange 
contribution to the cohesive energy [17].The cohesive energies calculated for Be, Ti, Zn and Zr vary from 
experiment by 28.8%, 33.4%, 29.0%, and 19.4%. The values obtained are in agreement with experimental 
measurements and literature reports within some reasonable percentage error.   
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